ИССЛЕДОВАТЕЛЬСКИЙ РЕАКТОР

Исследовательский реактор — разновидность ядерного реактора, предназначен для проведения исследовательских мероприятий в различных сферах науки и технической отрасли.

Предназначается для очень широкого круга исследований в различных областях науки и техники. Как правило, на исследовательском реакторе проводят исследования в области ядерной и нейтронной физики, физики низкоразмерных структур, физики твердого тела, ядерной и радиационной химии, материаловедения и металловедения, биологии, медицины; испытывают тепловыделяющие элементы (ТВЭЛ) проектируемых энергетических реакторов и конструкционные материалы для построения реакторов. Исследовательский реактор используют для получения радиоактивных изотопов. Метод активационного анализа, позволяющий исследовать состав образцов всевозможных материалов без их разрушения и обнаруживать минимальные количества химических элементов, также разработан на исследовательском реакторе.

Как и другие реакторы, исследовательский реактор имеет активную зону, которая содержит делящийся материал, а реакторы на тепловых нейтронах — еще и замедлитель нейтронов (обычная или тяжелая вода, графит, бериллий). В активной зоне осуществляется отвод тепла. Активная зона окружается отражателем нейтронов. Вокруг реактора располагается биологическая защита, которая часто пронизана трубами для вывода пучков нейтронов. Для получения мощного, быстрого потока тепловых нейтронов без примеси используют устройство, называемое тепловой колонной. Колонна выполнена из хорошего замедлителя (чаще всего графита), один конец расположен непосредственно у активной зоны, а другой конец колонны выведен в помещение, доступное для проведения экспериментов. Для загрузки испытуемых материалов внутрь активной зоны предусматриваются специальные приспособления (или каналы).

По спектру нейтронов в активной зоне исследовательские реакторы, как и все ядерные реакторы, делятся на реакторы на быстрых и тепловых нейтронах. Большинство исследовательских реакторов — реакторы на тепловых нейтронах, в основном гетерогенного типа, в них топливные элементы чередуются в определенном порядке с замедлителем. Исследовательские реакторы подразделяются на реакторы с низким, средним и высоким потоком нейтронов в активной зоне в общем диапазоне 1012—1015 нейтронов/(см2). Существуют импульсные исследовательские реакторы, предназначенные для кратковременного увеличения потока нейтронов до более высоких значений без увеличения средней мощности реактора и соответствующего усложнения системы теплосъема. Современный импульсный реактор на быстрых нейтронах (ИБР) позволяет получить поток нейтронов в максимуме импульса 1,3— 1018 нейтронов/(см2) с мгновенной мощностью 23 МВт при средней мощности 3 кВт в момент вспышки цепной реакции.

Вращающийся между топливными стержнями диск, в который запрессован кусок урана-235, служит для создания избыточной реактивности. Импульсный реактор на быстрых нейтронах предназначен для изучения нейтронной спектрометрии, физики твердых тел и жидкостей. По конструкции активной зоны различают исследовательские реакторы корпусного типа, погруженные в бассейн, канального типа. У исследовательского реактора корпусного типа активные зоны наиболее компактны, в связи с этим они обладают лучшими физическими характеристиками. Реакторы, погруженные в бассейн с водой, являются наиболее безопасными, так как все работы с радиоактивными изделиями ведутся через слой воды. Реакторы канального типа удобны для размещения и замены образцов испытуемых элементов. Но все три типа исследовательских реакторов имеют существенный недостаток. В них затруднен доступ к активной зоне или в межканальное пространство, что существенно усложняет проведение исследований.

Советскими учеными был разработан четвертый вид исследовательского реактора — реактор канального типа, в котором активная зона с рабочими каналами и трубопроводами погружена в бассейн с водой. Данному типу реактора присущи достоинства исследовательского реактора канального и погружного типа. Этот тип исследовательского реактора предназначен главным образом для испытаний тепловыделяющих элементов и материалов. При мощности 20 МВт в центральной нейтронной ловушке, представляющей собой цилиндр диаметром 100 мм, заполненный водой, достигается поток тепловых нейтронов 8 х 1014 нейтронов / (см2). К 1968 г. мощность реактора увеличена до 40 МВт. Для облучения в рабочие каналы с трубчатыми тепловыделяющими элементами устанавливают образцы материалов, они охлаждаются водой под давлением. Бериллиевые блоки используются в качестве замедлителя. В реактор загружается до 25 экспериментов петлевых каналов.

Для облегчения доступа к активной зоне при перегрузочных работах приводы стержней управления выполнены на передвижной тележке. Бассейн реактора соединен шлюзом с бассейном-хранилищем, где помещена у-облучательная установка, в которой используют в качестве источника излучений отработавшие топливные сборки. Каждый исследовательский реактор используется для обширного комплекса исследований, однако опыт создания и использования исследовательского реактора в мире показывает, что целесообразнее сооружать исследовательские реакторы, специализированные в определенных областях исследований.


ПОДЕЛИСЬ!